

Bestimmung von Fluorid mit Lanthannitrat

Beschreibung

Die Bestimmung des Fluorid-Gehaltes erfolgt durch Titration mit wässriger Lanthannitrat-Lösung 0.033 mol/l (0.1N). Diese Bestimmung ist für wässrige oder wasserlösliche Proben geeignet.

Bei sehr kleinen Fluorid-Gehalten kann es vorteilhaft sein, verdünntere Lanthannitrat-Lösungen zu verwenden.

Die Titration sollte bei pH 5-6 erfolgen. Als Puffer wird oft ein Acetatpuffer verwendet, was aber zu Überbefunden führen kann. Besser geeignet ist der hier verwendete MES – Puffer. Manchmal kann es auch vorteilhaft sein, wenn der Probe ca. 50% Isopropanol zugesetzt werden.

Die Berechnung erfolgt als mg/l Natriumfluorid.

Geräte

Titrator	TL 5000 oder höher	
Elektrode	F 1100 PLH oder F 60	
Kabel	L 1 A	
Elektrode	B2920+ (nicht nötig wenn F 60 genutzt wird)	
Kabel	L 1 N	
Rührer	Magnetrührer TM 235 oder ähnliche	
Laborgeräte	Kunststoffbecher 100 ml	
	Magnetrührstab 30 mm	

Reagenzien

1	Lanthannitratlösung 0.033 mol/l		
2	2-(N-Morpholino)ethansulfonsäure (MES)		
3	Verdünnte Natronlauge		
4	Destilliertes Wasser		
5	Isopropanol		
	Alle Reagenzien sollten mindestens analysenrein sein		

Durchführung der Titration

Reagenzien

La(NO₃)₃ - Lösung

14.3g La(NO₃)₃ * 6 H₂O werden in einem 1l Messkolben eingewogen und mit etwas dest. Wasser gelöst. Nach dem Auflösen wird mit dest. Wasser auf 1l aufgefüllt.

Die Titerbestimmung kann mit Natriumfluorid erfolgen, es werden die gleichen Titrationsparameter wie bei der Probentitration verwendet.

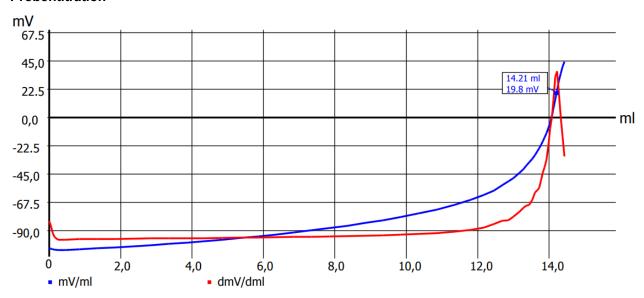
MES - Puffer pH 5,5

97,6 g 2-(N-Morpholino)ethansulfonsäure werden in ca. 900 ml Wasser gelöst, der pH-Wert mit verd. Natronlauge auf pH 5,5 eingestellt und im Messkolben auf 1I aufgefüllt.

Reinigung der Elektrode

Die Elektroden werden mit destilliertem Wasser gereinigt. Die F 1100 PLH wird trocken aufbewahrt. Für die Lagerung der B2920+ eignet sich sich KCI Lösung 3 mol/l oder Elektrolytlösung L 911.

Probenvorbereitung


Die Probe wird in einen 100 ml Kunststoffbecher eingewogen oder pipettiert und mit destilliertem Wasser auf etwa 60 ml aufgefüllt. Es werden 5 ml der MES-Pufferlösung zugegeben. Der pH-Wert sollte bei etwa pH 5,5 liegen, ggf. muss mehr Pufferlösung zugegeben werden. Anschließend wird mit La(NO₃)₃ – Lösung 0.033 mol/l auf einen Äguivalenzpunkt titriert.

Der Verbrauch sollte bei etwa 5 – 15 ml liegen.

xylem | Titration 121 AN

Titrationsparameter

Probentitration

Standardmethode			
Methodentyp	Automatische Titration		
Modus	Dynamisch		
Messwert	mV		
Messgeschwindigkeit / Drift	Benutzerdefiniert	Min. Wartezeit	5 s
		Max. Wartezeit	15 s
		Messzeit	3 s
		Drift	3 mV/min
Startwartezeit	0 s		
Dynamik	flach	Max. Schrittweite	0.5 ml
		Steigung bei max. ml	10
		Min. Schrittweite	0.05 ml
		Steigung bei min. ml	50
Dämpfung	keine	Titrationsrichtung	steigend
Vortitration	aus	Wartezeit	0 s
Endwert	Aus		
EQ	An(1)	Steigungswert	60
Max. Titrationsvolumen	20 ml		
Dosiergeschwindigkeit	100%	Füllgeschwindigkeit	30 s

Bei manchen Proben kann es vorkommen, dass die Titrationskurve sehr flach ist und der Titrator die Titration nicht am EQ beendet. In diesem Fall kann der Steigungswert für den EQ weiter verringert werden.

Zur Titerbestimmung der La(NO₃)₃ – Lösung mit Natriumfluorid wird die Referenzsubstanz genauso behandelt wie die Probe und mit den gleichen Einstellungen titriert.

xylem | Titration 121 AN 3

Berechnung:

$$Result [mg/l] = \frac{(EQ1 - B) * T * M * F1}{V * F2}$$

В	0	Blindwert	
EQ1		Verbrauch des Titrationsmittels am ersten EQ	
Т	WA	Exakte Konzentration des Titrationsmittels [mol/l]	
М	41,99	Molekulargewicht von Natriumfluorid	
V	man	Probenmenge [ml]	
F1	3000	Umrechnungsfaktor 1	
F2	1	Umrechnungsfaktor 2	

Soll die Berechnung nicht als mg/l Natriumfluorid, sondern als mg/l F⁻ erfolgen, so wird für M die molare Masse von F⁻ 18,998 g/mol eingestellt.

Berechnung der Konzentration der La $(NO_3)_3$ – Lösung bei der Titerbestimmung :

$$T [mol/l] = \frac{W * F2}{(EQ1 - B) * M * F1}$$

В	0	Blindwert	
EQ1		Verbrauch des Titrationsmittels am ersten EQ	
Т	WA	Exakte Konzentration des Titrationsmittels [mol/l]	
М	41,99	Molekulargewicht von Natriumfluorid	
W	man	Probenmenge [g]	
F1	3	Umrechnungsfaktor 1	
F2	1000	Umrechnungsfaktor 2	

